1,983 research outputs found

    Free-energy model for fluid helium at high density

    Full text link
    We present a semi-analytical free-energy model aimed at characterizing the thermodynamic properties of dense fluid helium, from the low-density atomic phase to the high-density fully ionized regime. The model is based on a free-energy minimization method and includes various different contributions representative of the correlations between atomic and ionic species and electrons. This model allows the computation of the thermodynamic properties of dense helium over an extended range of density and temperature and leads to the computation of the phase diagram of dense fluid helium, with its various temperature and pressure ionization contours. One of the predictions of the model is that pressure ionization occurs abruptly at \rho \simgr 10 g cm3^{-3}, {\it i.e.} P\simgr 20 Mbar, from atomic helium He to fully ionized helium He2+^{2+}, or at least to a strongly ionized state, without He+^{+} stage, except at high enough temperature for temperature ionization to become dominant. These predictions and this phase diagram provide a guide for future dynamical experiments or numerical first-principle calculations aimed at studying the properties of helium at very high density, in particular its metallization. Indeed, the characterization of the helium phase diagram bears important consequences for the thermodynamic, magnetic and transport properties of cool and dense astrophysical objects, among which the solar and the numerous recently discovered extrasolar giant planets.Comment: Accepted for publication in Phys. Rev.

    The Galactic disk mass-budget : II. Brown dwarf mass-function and density

    Get PDF
    In this paper, we extend the calculations conducted previously in the stellar regime to determine the brown dwarf IMF in the Galactic disk. We perform Monte Carlo calculations taking into account the brown dwarf formation rate, spatial distribution and binary fraction. Comparison with existing surveys seems to exclude a power-law MF as steep as the one determined in the stellar regime below 1 \msol and tends to favor a more flatish behaviour. Comparison with methane-dwarf detections tends to favor an eventually decreasing form like the lognormal or the more general exponential distributions determined in the previous paper. We calculate predicting brown dwarf counts in near-infrared color diagrams and brown dwarf discovery functions. These calculations yield the presently most accurate determination of the brown dwarf census in the Galactic disk. The brown dwarf number density is comparable to the stellar one, nBDn0.1n_{BD}\simeq n_\star\simeq 0.1 pc3^{-3}. The corresponding brown dwarf mass density, however, represents only about 10% of the stellar contribution, i.e. \rho_{BD}\simle 5.0\times 10^{-3} \mvol. Adding up the local stellar density determined previously yields the density of star-like objects, stars and brown dwarfs, in the solar neighborhood \rho_\odot \approx 5.0\times 10^{-2} \mvol.Comment: 39 pages, Latex file, uses aasms4.sty, to be published in ApJ, corrected version with correct figure

    Dense astrophysical plasmas

    Full text link
    We briefly examine the properties of dense plasmas characteristic of the atmospheres of neutron stars and of the interior of massive white dwarfs. These astrophysical bodies are natural laboratories to study respectively the problem of pressure ionization of hydrogen in a strong magnetic field and the crystallization of the quantum one-component-plasma at finite temperature.Comment: 8 pages, 3 figures, LaTeX using iopart.cls and iopart12.clo (included). In the special issue "Liquid State Theory: from White Dwarfs to Colloids" (International Conf. in the honor of Prof. J.-P. Hansen's 60th birthday, Les Houches, April 1-5, 2002

    Atmospheres and radiating surfaces of neutron stars with strong magnetic fields

    Get PDF
    We review the current status of the theory of thermal emission from the surface layers of neutron stars with strong magnetic fields B10101015B\sim 10^{10}-10^{15} G, including formation of the spectrum in a partially ionized atmosphere and at a condensed surface. In particular, we describe recent progress in modeling partially ionized atmospheres of central compact objects in supernova remnants, which may have moderately strong fields B10101011B\sim 10^{10}-10^{11} G. Special attention is given to polarization of thermal radiation emitted by a neutron star surface. Finally, we briefly describe applications of the theory to observations of thermally emitting isolated neutron stars.Comment: 27 pages, 5 figures, invited review at the conference "The Modern Physics of Compact Stars 2015" (Yerevan, Armenia, Sept. 30 - Oct. 3, 2015), edited by R. Avagyan, A. Saharian, and A. Sedrakian. In v.2, a citation (Ref.114) is correcte

    Opacities and spectra of hydrogen atmospheres of moderately magnetized neutron stars

    Full text link
    There is observational evidence that central compact objects (CCOs) in supernova remnants have moderately strong magnetic fields B1011B\sim10^{11} G. Meanwhile, available models of partially ionized hydrogen atmospheres of neutron stars with strong magnetic fields are restricted to B1012B\gtrsim10^{12} G. We extend the equation of state and radiative opacities, presented in previous papers for 10^{12}\mbox{ G}\lesssim B \lesssim 10^{15} G, to weaker fields. An equation of state and radiative opacities for a partially ionized hydrogen plasma are obtained at magnetic fields BB, temperatures TT, and densities ρ\rho typical for atmospheres of CCOs and other isolated neutron stars with moderately strong magnetic fields. The first- and second-order thermodynamic functions, monochromatic radiative opacities, and Rosseland mean opacities are calculated and tabulated, taking account of partial ionization, for 3\times10^{10}\mbox{ G}\lesssim B\lesssim 10^{12} G, 10510^5 K T107\lesssim T\lesssim 10^7 K, and a wide range of densities. Atmosphere models and spectra are calculated to verify the applicability of the results and to determine the range of magnetic fields and effective temperatures where the incomplete ionization of the hydrogen plasma is important.Comment: 11 pages, 7 figures, accepted for publication in A&

    Evolution of low-mass star and brown dwarf eclipsing binaries

    Full text link
    We examine the evolution of low-mass star and brown dwarf eclipsing binaries. These objects are rapid rotators and are believed to shelter large magnetic fields. We suggest that reduced convective efficiency, due to fast rotation and large field strengths, and/or to magnetic spot coverage of the radiating surface significantly affect their evolution, leading to a reduced heat flux and thus larger radii and cooler effective temperatures than for regular objects. We have considered such processes in our evolutionary calculations, using a phenomenological approach. This yields mass-radius and effective temperature-radius relationships in agreement with the observations. We also reproduce the effective temperature ratio and the radii of the two components of the recently discovered puzzling eclipsing brown dwarf system. These calculations show that fast rotation and/or magnetic activity may significantly affect the evolution of eclipsing binaries and that the mechanical and thermal properties of these objects depart from the ones of non-active low-mass objects. We find that, for internal field strengths compatible with the observed surface value of a few kiloGauss, convection can be severely inhibited. The onset of a central radiative zone for rapidly rotating active low-mass stars might thus occur below the usual \sim 0.35 \msol limit.Comment: to appear in A&A Letter
    corecore